Advanced querying

This section of the documentation demonstrates running queries using a fulltext index with an analyzer, queries using counting and aggregations, and support for the INSERT...FROM SELECT and INSERT...RETURNING constructs, all using the CrateDB SQLAlchemy dialect.

Table of Contents


Import the relevant symbols:

>>> import sqlalchemy as sa
>>> from sqlalchemy.orm import sessionmaker
>>> try:
...     from sqlalchemy.orm import declarative_base
... except ImportError:
...     from sqlalchemy.ext.declarative import declarative_base
>>> from uuid import uuid4

Establish a connection to the database, see also Engine Configuration and Connect:

>>> engine = sa.create_engine(f"crate://{crate_host}")
>>> connection = engine.connect()

Create an SQLAlchemy Session:

>>> session = sessionmaker(bind=engine)()
>>> Base = declarative_base()

Introduction to fulltext indexes

Fulltext indices take the contents of one or more fields and split it up into tokens that are used for fulltext-search. The transformation from a text to separate tokens is done by an analyzer. In order to conduct fulltext search queries, we need to create a table with a fulltext index with an analyzer.

CREATE TABLE characters (
    name STRING,
    quote STRING,
    INDEX name_ft USING fulltext(name) WITH (analyzer = 'english'),
    INDEX quote_ft USING fulltext(quote) WITH (analyzer = 'english')

We have to create this table using SQL because it is currently not possible to create INDEX fields using SQLAlchemy’s Declarative Mapping. However, we can define the table to use all other operations:

>>> def gen_key():
...     return str(uuid4())
>>> class Character(Base):
...     __tablename__ = 'characters'
...     id = sa.Column(sa.String, primary_key=True, default=gen_key)
...     name = sa.Column(sa.String)
...     quote = sa.Column(sa.String)
...     name_ft = sa.Column(sa.String)
...     quote_ft = sa.Column(sa.String)
...     __mapper_args__ = {
...         'exclude_properties': ['name_ft', 'quote_ft']
...     }

We define name_ft and quote_ft as regular columns, but add them under __mapper_args__.exclude_properties to ensure they’re excluded from insert or update operations.

In order to support fulltext query operations, the CrateDB SQLAlchemy dialect provides the MATCH Predicate through its match function.

Let’s add two records we use for testing.

>>> arthur = Character(name='Arthur Dent')
>>> arthur.quote = "Let's go somewhere."
>>> session.add(arthur)
>>> trillian = Character(name='Tricia McMillan')
>>> trillian.quote = "We're on a space ship Arthur. In space."
>>> session.add(trillian)
>>> session.commit()

After INSERT statements are submitted to the database, the newly inserted records aren’t immediately available for retrieval, because the index is only updated periodically (default: each second). In order to synchronize that, explicitly refresh the table:

>>> _ = connection.execute(sa.text("REFRESH TABLE characters"))

Fulltext search with MATCH predicate

Fulltext search in CrateDB is performed using MATCH Predicate. The CrateDB SQLAlchemy dialect comes with a match function, which can be used to search on one or multiple fields.

>>> from sqlalchemy_cratedb import match
>>> session.query( \
...     .filter(match(Character.name_ft, 'Arthur')) \
...     .all()
[('Arthur Dent',)]

To get the relevance of a matching row, you can select the _score system column. It is a numeric value which is relative to the other rows. The higher the score value, the more relevant the row.

In most cases, _score is not part of the SQLAlchemy table definition, so it must be passed as a verbatim string, using literal_column:

>>> session.query(, sa.literal_column('_score')) \
...     .filter(match(Character.quote_ft, 'space')) \
...     .all()
[('Tricia McMillan', ...)]

To search multiple columns, use a dictionary where the keys are the columns and the values are a boost. A boost is a factor that increases the relevance of a column in respect to the other columns:

>>> session.query( \
...           .filter(match({Character.name_ft: 1.5, Character.quote_ft: 0.1},
...                         'Arthur')) \
...     .order_by(sa.desc(sa.literal_column('_score'))) \
...     .all()
[('Arthur Dent',), ('Tricia McMillan',)]

The match_type argument determines how a single query_term is applied, and how the resulting _score is computed. Thus, it influences which documents are considered more relevant. The default selection is best_fields. For more information, see Match Types.

If you want to sort the results by _score, you can use the order_by() function.

>>> session.query( \
...     .filter(
...         match(Character.name_ft, 'Arth',
...                 match_type='phrase',
...                 options={'fuzziness': 3})
...     ) \
...     .all()
[('Arthur Dent',)]

It is not possible to specify options without the match_type argument:

>>> session.query( \
...     .filter(
...         match(Character.name_ft, 'Arth',
...                 options={'fuzziness': 3})
...     ) \
...     .all()
Traceback (most recent call last):
ValueError: missing match_type. It's not allowed to specify options without match_type

Aggregates: Counting and grouping

SQLAlchemy supports different approaches to issue a query with a count aggregate function. Take a look at the count result rows documentation for a full overview.

CrateDB currently does not support all variants as it can not handle the sub-queries yet.

This means that queries using count() have to be written in one of the following ways:

>>> session.query(sa.func.count(
>>> session.query(sa.func.count('*')).select_from(Character).scalar()

Using the group_by clause is similar:

>>> session.query(sa.func.count(, \
...     .group_by( \
...     .order_by(sa.desc(sa.func.count( \
...     .order_by(
[(1, 'Arthur Dent'), (1, 'Tricia McMillan')]


In SQLAlchemy, the insert().from_select() function returns a new Insert construct, which represents an INSERT...FROM SELECT statement. This functionality is supported by the SQLAlchemy CrateDB dialect. Here is an example that uses insert().from_select().

First, let’s define and create the tables:

>>> from sqlalchemy import select, insert
>>> class Todos(Base):
...     __tablename__ = 'todos'
...     __table_args__ = {
...         'crate_number_of_replicas': '0'
...     }
...     id = sa.Column(sa.String, primary_key=True, default=gen_key)
...     content = sa.Column(sa.String)
...     status = sa.Column(sa.String)
>>> class ArchivedTasks(Base):
...     __tablename__ = 'archived_tasks'
...     __table_args__ = {
...         'crate_number_of_replicas': '0'
...     }
...     id = sa.Column(sa.String, primary_key=True)
...     content = sa.Column(sa.String)
>>> Base.metadata.create_all(bind=engine)

Let’s add a task to the Todo table:

>>> task = Todos(content='Write Tests', status='done')
>>> session.add(task)
>>> session.commit()
>>> _ = connection.execute(sa.text("REFRESH TABLE todos"))

Now, let’s use insert().from_select() to archive the task into the ArchivedTasks table:

>>> sel = select(, Todos.content).where(Todos.status == "done")
>>> ins = insert(ArchivedTasks).from_select(['id', 'content'], sel)
>>> result = session.execute(ins)
>>> session.commit()

This will emit the following INSERT statement to the database:

INSERT INTO archived_tasks (id, content)

(SELECT, todos.content FROM todos WHERE todos.status = ‘done’)

Now, verify that the data is present in the database:

>>> _ = connection.execute(sa.text("REFRESH TABLE archived_tasks"))
>>> pprint([str(r) for r in session.execute(sa.text("SELECT content FROM archived_tasks"))])
["('Write Tests',)"]


The RETURNING clause can be used to retrieve the result rows of an INSERT operation. It may be specified using the Insert.returning() method.

The first step is to define the table:

>>> from sqlalchemy import insert
>>> class User(Base):
...     __tablename__ = 'user'
...     __table_args__ = {
...         'crate_number_of_replicas': '0'
...     }
...     id = sa.Column(sa.String, primary_key=True, default=gen_key)
...     username = sa.Column(sa.String)
...     email = sa.Column(sa.String)
>>> Base.metadata.create_all(bind=engine)

Now, let’s use the returning clause on our insert to retrieve the values inserted:

>>> stmt = insert(User).values(username='Crate', email='').returning(User.username,
>>> result = session.execute(stmt)
>>> session.commit()
>>> print([str(r) for r in result])
["('Crate', '')"]

The following INSERT...RETURNING statement was issued to the database:

INSERT INTO user (id, username, email)
VALUES (:id, :username, :email)
RETURNING, user.username,


The RETURNING clause can also be used with an UPDATE operation to return specified rows to be returned on execution. It can be specified using the Update.returning() method.

We can reuse the user table previously created in the INSERT...RETURNING section.

Insert a user and get the user id:

>>> from sqlalchemy import insert, update
>>> stmt = insert(User).values(username='Arthur Dent', email='').returning(, User.username,
>>> result = session.execute(stmt)
>>> session.commit()
>>> uid = [r[0] for r in result][0]

Now let’s update the user:

>>> stmt = update(User).where( == uid).values(username='Tricia McMillan', email='').returning(User.username,
>>> res = session.execute(stmt)
>>> session.commit()
>>> print([str(r) for r in res])
["('Tricia McMillan', '')"]

The following UPDATE...RETURNING statement was issued to the database:

UPDATE user SET username=:username, email=:email
WHERE = :id_1
RETURNING user.username,