Live Webinar: From Rockset to CrateDB

Register now
Skip to content
Product > Database

SQL Examples

 

Time-series data

 

        

/* To identify gaps on the readings, the following queries generates a series
 * and by joining it with the original data, you can spot any gap */
with avg_battery AS (
  SELECT battery_level, time 
  FROM devices.readings
  WHERE device_id = 'demo000007' 
  AND time > 1480118400000 
  AND time < 1480301200000
  ORDER BY 2
),

all_hours AS (
  SELECT generate_series(1480118430000,1480301200000,'30 second'::interval) AS generated_hours
)

SELECT time, generated_hours, battery_level
FROM all_hours 
LEFT JOIN avg_battery ON generated_hours = time
ORDER BY 2
LIMIT 20;
        

+---------------+---------------+---------------+
|          time |         hours | battery_level |
+---------------+---------------+---------------+
| 1480118430000 | 1480118430000 |            67 |
| 1480118460000 | 1480118460000 |            66 |
| 1480118490000 | 1480118490000 |            66 |
| 1480118520000 | 1480118520000 |            66 |
| 1480118550000 | 1480118550000 |            66 |
| 1480118580000 | 1480118580000 |            66 |
| 1480118610000 | 1480118610000 |            65 |
| 1480118640000 | 1480118640000 |          NULL |
| 1480118670000 | 1480118670000 |            65 |
| 1480118700000 | 1480118700000 |            65 |
| 1480118730000 | 1480118730000 |            65 |
| 1480118760000 | 1480118760000 |            65 |
| 1480118790000 | 1480118790000 |            65 |
| 1480118820000 | 1480118820000 |            65 |
| 1480118850000 | 1480118850000 |            65 |
| 1480118880000 | 1480118880000 |            65 |
| 1480118910000 | 1480118910000 |            65 |
| 1480118940000 | 1480118940000 |            65 |
| 1480118970000 | 1480118970000 |          NULL |
| 1480119000000 | 1480119000000 |          NULL |
+---------------+---------------+---------------+
        

/* Based on device data, this query returns the number of battery charges 
 * per day for a given device_id */
WITH aux_charging AS (
    SELECT time, 
      DATE_BIN('P1D'::INTERVAL,time,0) AS day, 
      battery_status, 
      LAG(battery_status) OVER (PARTITION BY device_id ORDER BY time) AS prev_battery_status
    FROM devices.readings
    WHERE device_id = 'demo000001'
    ORDER BY time
  ),

count_start_charging AS (
    SELECT day, (case when battery_status <> prev_battery_status then 1 else 0 end) AS start_charging
    FROM aux_charging
    ORDER BY 1
  )

SELECT day, sum(start_charging) as charges_number
FROM count_start_charging
GROUP BY 1
ORDER BY 1;
        

+---------------+---------------+
| count_charges |           day |
+---------------+---------------+
|             2 | 1479168000000 |
|             4 | 1479254400000 |
|             2 | 1479340800000 |
|            10 | 1479427200000 |
|             7 | 1479600000000 |
|             8 | 1479686400000 |
|             6 | 1479772800000 |
|            11 | 1479859200000 |
|             5 | 1480032000000 |
|             7 | 1480118400000 |
|             6 | 1480204800000 |
|            10 | 1480291200000 |
|             3 | 1480464000000 |
|             3 | 1480550400000 |
|             7 | 1480636800000 |
|             2 | 1480723200000 |
+---------------+---------------+
        

/* Based on device data, this query returns the average of the battery temperature
 * for each OS version */
SELECT device_info['os_name'], avg(battery_temperature)
FROM "devices"."readings"
GROUP BY 1
LIMIT 100;
        
 
+---------+--------------------------+
| os_name | avg(battery_temperature) |
+---------+--------------------------+
| 4.4.4   |        90.85937893039049 |
| 5.1.0   |        90.86754559738132 |
| 6.0.1   |        90.84230101265824 |
| 5.0.0   |        90.8574802739726  |
+---------+--------------------------+
 

JSON data

        

INSERT INTO community_areas(areanumber, name, details) VALUES (
   35,
   'DOUGLAS',
   '{
      "description": "The Douglas community area stretches...",
      "population": 20291,
      "zipcodes": [ "60609", "60616", "60653" ],
      "notableresident": {
         "name": "Ida B. Wells",
         "bio": "An American investigative journalist, educator and..."
      }
   }'::OBJECT
)
        
        
        
        
 
/* Retrieve fields from objects and slice arrays. */
SELECT name, 
       array_slice(details['zipcodes'], 1, 1) as first_zip, 
       details['population'] AS population, 
       details['notableresident']['name'] AS famous_resident 
FROM community_areas 
WHERE areanumber = 35;
        

+---------+-----------+------------+-----------------+
| name    | first_zip | population | famous_resident |
+---------+-----------+------------+-----------------+
| DOUGLAS | ["60609"] |      20291 | Ida B. Wells    |
+---------+-----------+------------+-----------------+
        

/* Insert documents for two Chicago community areas.  Dynamic 
   object schemas allow these two documents to have different
   structures. */
INSERT INTO community_areas(areanumber, name, details) VALUES 
  (
    35,
    'DOUGLAS',
    '{
      "description": "The Douglas community area stretches...",
      "population": 20291,
      "zipcodes": [ "60609", "60616", "60653" ],
      "notableresident": {
        "name": "Ida B. Wells",
        "bio": "An American investigative journalist, educator and..."
      }
    }'::OBJECT
  ),
  (
    41,
    'HYDE PARK',
    '{
      "description": "This community area is home to the Museum of Science...",
      "population": 29456,
      "notableresident": {
        "name": "Muhammad Ali",
        "born": 1942
      }
    }'::OBJECT    
  );
        
        
        
 

Vector data

        

SELECT text, _score
FROM word_embeddings
WHERE knn_match(embedding, (SELECT embedding FROM word_embeddings WHERE text ='Discovering galaxies'), 2)
ORDER BY _score DESC
        

|------------------------|--------|
|         text           | _score |
|------------------------|--------|
|Discovering galaxies    |1       |
|Discovering moon        |0.952381|
|Exploring the cosmos    |0.840336|
|Sending the mission     |0.250626|
|------------------------|--------|

CrateDB Academy – Free Courses

Enroll for free, Learn, and Get Certified

 

Full-text data

        

/* The table stores data about netflix movies and series. The composite fulltext 
 * index is defined on two columns with the analyzer based on English language. */
CREATE TABLE "netflix_catalog" (
    "show_id" TEXT PRIMARY KEY,
    "type" TEXT,
    "title" TEXT,
    "director" TEXT,
    "cast" ARRAY(TEXT),
    "country" TEXT,
    "date_added" TIMESTAMP,
    "release_year" TEXT,
    "rating" TEXT,
    "duration" TEXT,
    "listed_in" ARRAY(TEXT),
    "description" TEXT,
    INDEX title_director_description_ft using FULLTEXT (title, director, description) 
    WITH (analyzer = 'english')
);
        
        
        
        

/* This query searches for records where the combined fields of title, director, and
 * description match the phrase 'mission impossible', with a different weights given to
 * title and description. The results are ordered by their relevance score in desc order. */
SELECT show_id, type, title, director, country, rating, description, _score
FROM "netflix_catalog"
WHERE MATCH((title_director_description_ft, title 1.5, description 1), 'mission impossible')
ORDER BY _score DESC;
        

+---------+----------+------------------------+--------------------+---------------------------------+--------+---------------------------------------------------------------------------------------------------------------------------------------------------------+-----------+
| show_id | type     | title                  | director           | country                         | rating | description                                                                                                                                             | _score    |
+---------+----------+------------------------+--------------------+---------------------------------+--------+---------------------------------------------------------------------------------------------------------------------------------------------------------+-----------+
| s1000   | Movie    | Stowaway               | Joe Penna          | Germany, United States          | TV-MA  | A three-person crew on a mission to Mars faces an impossible choice when an unplanned passenger jeopardizes the lives of everyone on board.             | 5.0469    |
| s1768   | Movie    | The Impossible         | J.A. Bayona        | Spain, Thailand, United States  | PG-13  | Tracking one family's harrowing experiences, this gripping drama depicts the chaos generated by the massive 2004 tsunami in Southeast Asia.             | 3.1496503 |
| s7873   | TV Show  | Rishta.com             | NULL               | India                           | TV-14  | Partners at an Indian matrimonial agency face endlessly challenging and often impossible demands as they help clients make the perfect match.           | 3.131972  |
| s3242   | TV Show  | Nailed It! Holiday!    | NULL               | United States                   | TV-PG  | It's the "Nailed It!" holiday special you've been waiting for, with missing ingredients, impossible asks and desserts that look delightfully sad.       | 3.1265335 |
| s1032   | Movie    | Into the Beat          | Stefan Westerwelle | Germany                         | TV-14  | A teen ballerina discovers hip-hop by chance and is faced with an impossible choice: Does she follow her parents' footsteps... or her newfound passion? | 2.9678147 |
| s1583   | Movie    | Triple 9               | John Hillcoat      | United States                   | R      | A group of dirty Atlanta cops blackmailed by the Russian mob plan a seemingly impossible heist that sets off an explosive chain reaction of violence.   | 2.9678147 |
| s848    | TV Show  | Mad for Each Other     | NULL               | NULL                            | TV-MA  | Bothered to realize they are next-door neighbors and share a psychiatrist, a man and a woman find it's impossible to stay out of each other's way.      | 2.9385366 |
+---------+----------+------------------------+--------------------+---------------------------------+--------+---------------------------------------------------------------------------------------------------------------------------------------------------------+-----------+
        

/* The query searches records where the combined title, director, and description 
 * fields phrase-prefix match 'award winning' with a relevance score of at least 10,
 * and orders the results by their relevance score in descending order. */

SELECT show_id, type, title, country, rating, duration, _score
FROM "netflix_catalog"
WHERE MATCH(title_director_description_ft, 'award winning') USING phrase_prefix
AND _score >= 10
ORDER BY _score DESC;
        

+---------+----------+-----------------------------------------+-----------------+--------+------------+-----------+
| show_id | type     | title                                   | country         | rating | duration   | _score    |
| ------- | -------- | ----------------------------------------| --------------- | ------ | ---------- | --------- |
| s2423   | TV Show  | Queer Eye                               | United States   | TV-14  | 5 Seasons  | 56.835224 |
| s5930   | Movie    | Print the Legend                        | United States   | TV-14  | 100 min    | 56.835224 |
| s849    | TV Show  | Master of None                          | United States   | TV-MA  | 3 Seasons  | 54.720444 |
| s7369   | TV Show  | Mad Men                                 | United States   | TV-14  | 7 Seasons  | 53.722008 |
| s4556   | Movie    | The Meaning of Monty Python             | United Kingdom  | TV-MA  | 60 min     | 51.933487 |
| s6342   | TV Show  | Blue Planet II                          | United Kingdom  | TV-G   | 1 Season   | 51.933487 |
| s4162   | Movie    | Surga Yang Tak Dirindukan 2             | Indonesia       | TV-14  | 119 min    | 50.937637 |
| s5186   | TV Show  | Alias Grace                             | Canada          | TV-MA  | 1 Season   | 41.05056  |
| s4184   | TV Show  | The World's Most Extraordinary Homes    | United Kingdom  | TV-G   | 3 Seasons  | 39.506954 |
| s6111   | Movie    | Alejandro Sanz: What I Was Is What I Am | Spain           | TV-MA  | 102 min    | 38.77893  |
+---------+----------+-----------------------------------------+-----------------+--------+------------+-----------+
        

/* This query uses the composite index to match the term 'scence fction'
 * (with a likely typo in 'science fiction'), allowing for some fuzziness in matching,
 * using the English analyzer, requiring at least one term to match. */
SELECT show_id, title, country, description, _score
FROM "netflix_catalog"
WHERE MATCH(title_director_description_ft, 'scence fction')
      USING best_fields
      WITH (
          fuzziness=1,
          analyzer='english',
          minimum_should_match=1,
          operator='or'
      )       
ORDER BY _score DESC;
        

+---------+---------------------------------------+----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+-----------+
| show_id | title                                 | country        | description                                                                                                                                              | _score    |
+---------+---------------------------------------+----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+-----------+
| s1604   | Alien Worlds                          | United Kingdom | Applying the laws of life on Earth to the rest of the galaxy, this series blends science fact and fiction to imagine alien life on other planets.        | 4.052918  |
| s2589   | Oh Yuck                               | Canada         | Using a concoction of cartoons, comedy and live action, Dr. Yuck and his eccentric lab mates investigate the science behind the planet's ickiest things. | 3.8219523 |
| s7848   | Red vs. Blue                          | United States  | This parody of first-person shooter games, military life and science-fiction films centers on a civil war fought in the middle of a desolate canyon.     | 3.8219523 |
| s3054   | Border Security: America's Front Line | Canada         | This reality series chronicles the behind-the-scenes action as U.S. Customs and Border Protection agents safeguard the nation's crossings and ports.     | 3.5455647 |
| s5870   | Turbo FAST                            | United States  | Join Turbo and his posse, the Fast Action Stunt Team. Filled with comedy, action and fun, this series amps it up to the extreme.                         | 2.695207  |
| s3574   | Our Planet - Behind The Scenes        | United Kingdom | Years spent recording footage of creatures from every corner of the globe is bound to produce a bit of drama. Here's a behind-the-scenes look.           | 2.5541513 |
| s8016   | Sid the Science Kid                   | United States  | Armed with a healthy sense of humor and the help of his teacher, friends and family, curious kid Sid tackles questions youngsters have about science.    | 2.5541513 |
| s4917   | Bill Nye: Science Guy                 | United States  | The dynamic, bow-tied host behind the young adult science show faces climate-change skeptics as he demonstrates the importance of scientific evidence.   | 2.49332   |
+---------+---------------------------------------+----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------+-----------+
 

Spatial data

        

/* Based on Chicago taxi trips, this query lists the longest 5 trips 
   starting within 1km of the Shedd Aquarium and tells us the name
   of the community area that the trip ended within. */
SELECT tripid, 
       miles,
       c.name as dropoff_area
FROM taxi_rides t, community_areas c
WHERE distance('POINT(-87.6118581 41.8672843)'::GEO_POINT, pickupcentroidlocation) < 1000
      AND dropoffcommunityarea = c.areanumber
ORDER BY miles DESC
LIMIT 5; 
        

+------------------------------------------+-------+--------------+
| tripid                                   | miles | dropoff_area |
+------------------------------------------+-------+--------------+
| e6d27fb09f7b17695a71666654c40fd56b79f472 | 46.5  | LOOP         |
| eb8dbd2d81faa21f8f6d80117748a8630c55d55c | 37.27 | OHARE        |
| 6aaa0d2aed0423f1321ff5df949afef0e3583d58 | 37.16 | OHARE        |
| e9ab078e5e6ed4d29cfbd310ee75d47236d3afbb | 32.03 | OHARE        |
| 329b4e6980070cab4c2af19ddbc7b73c1497a669 | 31.67 | OHARE        |
+------------------------------------------+-------+--------------+
        

/* Based on Chicago taxi trips, this query retuern the number 
   of trips per day that started at O'Hare airport and were
   over 20 miles long. */
SELECT date_bin('24 hour'::interval, starttime, 0) AS day,
       count(*) as trips
FROM taxi_rides
WHERE within(
        pickupcentroidlocation, 
        'POLYGON (
          (-87.92151405039768 42.008992106324456, 
           -87.93962405297475 42.00147632076016, 
           -87.94067626623455 41.95592273798644, 
           -87.89918645000783 41.9491763875842, 
           -87.88992003878232 41.95716729007498, 
           -87.8821237584836 41.95716462062882, 
           -87.87074008603852 41.967968085787476, 
           -87.87727540517479 41.99772302560805, 
           -87.89707897269737 42.009775581434354, 
           -87.92151405039768 42.008992106324456)
        )'
      )
      AND miles > 20
GROUP BY day
ORDER BY day DESC;
        

+---------------+-------+
|           day | trips |
+---------------+-------+
| 1714521600000 |    24 |
| 1714435200000 |   110 |
| 1714348800000 |   109 |
| 1714262400000 |    77 |
| 1714176000000 |    52 |
| 1714089600000 |    98 |
| 1714003200000 |   113 |
| 1713916800000 |    82 |
| 1713830400000 |    59 |
| 1713744000000 |    91 |
| 1713657600000 |    69 |
| 1713571200000 |    48 |
| 1713484800000 |    82 |
| 1713398400000 |    75 |
| 1713312000000 |    80 |
| 1713225600000 |    98 |
| 1713139200000 |   104 |
| 1713052800000 |    63 |
| 1712966400000 |    75 |
| 1712880000000 |   142 |
| 1712793600000 |   169 |
| 1712707200000 |   103 |
| 1712620800000 |   154 |
| 1712534400000 |   203 |
| 1712448000000 |    98 |
| 1712361600000 |    71 |
| 1712275200000 |    80 |
| 1712188800000 |    79 |
| 1712102400000 |    72 |
| 1712016000000 |    91 |
| 1711929600000 |    39 |
+---------------+-------+
        

/* Which communities of more than 30,000 people does a flight from O'Hare to 
   Midway airport pass over? */
SELECT name,
       details['population'] AS population
FROM community_areas
WHERE
  intersects (
    'LINESTRING (-87.90753846894022 41.9807787186139, -87.72939445102593 41.97508268795004, -87.55763552335945 41.97982941555023, -87.47846040428642 41.92427055787562, -87.51102436455034 41.837749425166244, -87.59225264192574 41.80057450627759, -87.64801197528328 41.770600684095974, -87.69988112259261 41.7819633786835, -87.7530469985847 41.78583107072223)',
    boundaries
  )
  AND details['population'] > 30000
ORDER BY population DESC;
        

+------------------------+------------+
| name                   | population |
+------------------------+------------+
| UPTOWN                 |      57182 |
| EDGEWATER              |      56296 |
| CHICAGO LAWN           |      55931 |
| ALBANY PARK            |      48396 |
| LINCOLN SQUARE         |      40494 |
| NORWOOD PARK           |      38303 |
| GARFIELD RIDGE         |      35439 |
| WEST LAWN              |      33662 |
| GREATER GRAND CROSSING |      31471 |
+------------------------+------------+
 

Table data

        

/* Table that stores device reading information. 
 * Composite primary key defined on two columns. */
CREATE TABLE IF NOT EXISTS "doc"."devices_readings" (
   "ts" TIMESTAMP WITH TIME ZONE,
   "device_id" TEXT,
   "battery" OBJECT(DYNAMIC) AS (
      "level" BIGINT,
      "status" TEXT,
      "temperature" DOUBLE PRECISION
   ),
   "cpu" OBJECT(DYNAMIC) AS (
      "avg_1min" DOUBLE PRECISION,
      "avg_5min" DOUBLE PRECISION,
      "avg_15min" DOUBLE PRECISION
   )
   PRIMARY KEY (ts, device_id)
)
CLUSTERED INTO 6 SHARDS
        
        
        
        

/* The query returns 10 records from two joined tables:
 * devices_readings and devices_info. */
SELECT r.device_id, 
       r.ts,
       r.battery['level'], 
       r.battery['status'], 
       i.manufacturer, 
       i.os_name
FROM devices_readings r
JOIN devices_info i ON r.device_id = i.device_id
LIMIT 10;
        

+------------+---------------+------------------+-------------------+--------------+---------+
| device_id  |     ts        | battery['level'] | battery['status'] | manufacturer | os_name |
+------------+---------------+------------------+-------------------+--------------+---------+
| demo000025 | 1479920640000 |        26        | discharging       | iobeam       | 6.0.1   |
| demo000025 | 1480209300000 |        52        | discharging       | iobeam       | 6.0.1   |
| demo000025 | 1479663270000 |        53        | charging          | iobeam       | 6.0.1   |
| demo000062 | 1479461430000 |        14        | discharging       | iobeam       | 6.0.1   |
| demo000067 | 1480606380000 |        42        | discharging       | iobeam       | 5.0.0   |
| demo000081 | 1479387000000 |        85        | discharging       | iobeam       | 6.0.1   |
| demo000081 | 1480166250000 |        50        | discharging       | iobeam       | 6.0.1   |
| demo000081 | 1479369300000 |        35        | discharging       | iobeam       | 6.0.1   |
| demo000087 | 1479885600000 |        72        | discharging       | iobeam       | 5.0.0   |
| demo000087 | 1480322430000 |        65        | discharging       | iobeam       | 5.0.0   |
+------------+---------------+------------------+-------------------+--------------+---------+
        

/*
 * Based on sensor data, this query calculates:
 * - time-buckets of 10 seconds
 * - different aggregations per time-bucket and host group
 */
SELECT FLOOR(EXTRACT(epoch FROM m.timestamp) / 10) * 10 AS period,
       h.host_group,
       MIN(m.fields['usage_user']) AS "min",
       AVG(m.fields['usage_user']) AS "avg",
       MAX(m.fields['usage_user']) AS "max"
FROM telegraf.metrics m
LEFT JOIN telegraf.hosts h ON h.host_name = m.tags['host']
WHERE tags['cpu'] = 'cpu-total'
  AND m.timestamp > NOW() - '150 seconds'::INTERVAL
GROUP BY 1, 2
ORDER BY 1 DESC;



        

+------------+---------+-------+--------------+
| device_id  | battery |   cpu | manufacturer |
+------------+---------+-------+--------------+
| demo002053 |    96.6 |  6.17 | iobeam       |
| demo002380 |    91.7 |  8.71 | iobeam       |
| demo000391 |    96.3 | 21.0  | iobeam       |
| demo000472 |    90.4 |  8.23 | iobeam       |
| demo000157 |    93.9 |  4.17 | iobeam       |
| demo000307 |    89.2 |  6.05 | iobeam       |
| demo002227 |    88.9 |  5.24 | iobeam       |
| demo000703 |    93.2 |  4.17 | iobeam       |
| demo001792 |    89.3 |  4.18 | iobeam       |
| demo001780 |    87.9 |  4.95 | iobeam       |
+------------+---------+-------+--------------+
        

/* The query provides a detailed analysis of the battery performance 
 * (both level and temperature) for devices with specific API versions,
 * while focusing only on recent data. */
WITH 
max_timestamp AS (
    SELECT MAX(ts) AS max_ts
    FROM doc.devices_readings
),
device_readings_agg AS (
    SELECT 
        r.device_id,
        AVG(r.battery['level']) AS avg_battery_level,
        AVG(r.battery['temperature']) AS avg_battery_temperature
    FROM devices_readings r, max_timestamp m
    WHERE r.ts >= m.max_ts - INTERVAL '1 week'
    GROUP BY r.device_id
),
device_model_info AS (
    SELECT 
        device_id,
        manufacturer,
        model,
        api_version
    FROM devices_info
    WHERE api_version BETWEEN 21 AND 25
)
SELECT 
    info.manufacturer,
    info.model,
    info.api_version,
    AVG(read.avg_battery_level) AS model_avg_battery_level,
    AVG(read.avg_battery_temperature) AS model_avg_battery_temperature,
    COUNT(*) AS readings_count
FROM device_readings_agg read
JOIN device_model_info info 
ON read.device_id = info.device_id
GROUP BY 
    info.manufacturer, 
    info.model, 
    info.api_version
ORDER BY 
    model_avg_battery_level DESC;
        

+--------------+---------+-------------+-------------------------+-------------------------------+----------------+
| manufacturer | model   | api_version | model_avg_battery_level | model_avg_battery_temperature | readings_count |
+--------------+---------+-------------+-------------------------+-------------------------------+----------------+
| iobeam       | focus   |          22 |      51.812515496614985 |             90.95264431126454 |             37 |
| iobeam       | pinto   |          23 |      51.320575821166265 |             90.94536040662497 |             29 |
| iobeam       | mustang |          21 |      51.12593768085889  |             90.84655787872552 |             57 |
| iobeam       | mustang |          22 |      50.92397024012975  |             90.8132448654412  |             29 |
| iobeam       | focus   |          23 |      50.3493936780697   |             90.86938401742282 |             27 |
| iobeam       | mustang |          23 |      50.226325680521306 |             90.82969886537008 |             28 |
| iobeam       | pinto   |          21 |      50.11437819309262  |             90.81538121980917 |             60 |
| iobeam       | focus   |          21 |      49.60331350481256  |             90.87625045994797 |             59 |
| iobeam       | pinto   |          22 |      49.54924258513566  |             90.84554594103246 |             29 |
+--------------+---------+-------------+-------------------------+-------------------------------+----------------+

Interested in learning more?